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DISTRIBUTIONS OF RANDOM SETS 
AND R A N D O M SELECTIONS 

BY 

ZVI ARTSTEIN 

ABSTRACT 

Distributions of selcctions of a random set are characterized in terms of 
inequalities, similar to the marriage problem. A consequence is that the 
ensemble of such distributions is convex compact and depends continuously on 
the distribution of the random set. 

1. Introduction 

Set valued mappings and their measurable selections arise in several applica- 

tions. These include pattern analysis, stochastic geometry,  optimization and 

mathematical  economics. In the latter applications one is interested primarily in 

the structure and the distributions of the measurable selections. In the former  

fields the set-valued map is often viewed as a random set, and the distributions of 

these random variables are of interest. General  references to such applications 

are Grenander  [3], Kendall [8], Matheron [9] and Hildenbrand [7]. 

In this paper  we analyze the connections between the distribution of a random 

set and the ensemble of distributions induced by possible selections. In Section 2 

we characterize the distributions of possible selections in terms similar to the 

well known marriage problem. Indeed, a continuous version of this problem 

serves as the main tool in the proof. This generalization of the marriage problem 

is given in the self-contained Section 3. A by-product of the proof is a 

construction of a canonical measure space in which all the possible distributions 

of selections can be realized. This result is also stated in Section 2. The proofs of 

these theorems are given in Section 4. We apply the results and show in Section 5 

that the ensemble of distributions of possible selections is compact  convex and 

varies continuously. Further comments  are listed in the closing section. 

2. Characterization of selectionable distributions 

We first set the f ramework and collect a few known facts. Let (X, d)  be a 
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complete separable metric space. (Euclidean spaces and Banach spaces appear 

in most of the applications.) Let 3'[ denote the family of compact subsets of X. 

With the Hausdorff distance, given by 

h ( K , L ) = m a x (  maxx~ mind(x,y~L y)'  maxy~L mind(x,xeK Y)) '  

the space Y( becomes a complete separable metric space. 

Let (ll, u) be a probability measure space. A random set is a measurable 

mapping F : ll--* Y{, the latter considered with its Borel structure. The distribu- 

tion D F  of F is, as usual, the probability measure on Y{" given by 

D F ( A )  = u({w : F ( o ) E  A}). 

A selection of F is a measurable mapping (:f~---~X with f ( o o ) E F ( w )  for 

u-almost every w. The distribution D[ of f is a probability measure on X. Given 

a probability distribution or on ~'( we wish to know which distributions p on X 

are induced by selections of random sets F with D F  = or. Notice that checking 

one such F might not be enough, since the distribution of a random set does not 

determine the collection of distributions of its selections. (See more on this in the 

closing section.) We therefore say that a distribution p on X is selectionable with 

respect to a distribution o- on Y( if there is a measure space (1~, u) and a random 

set F on it with D F  = or, and a selection [ of F with 19[ = p. (Notice that for C 

closed in X the set {K : K CI C/Q~} is closed, hence measurable, in 5~.) 

THEOREM 2.1. A distribution p an X is selectionable with respect to a distribu- 

tion or on ~{ if and only if 

( # )  p ( C ) < - O r ( { K : K N C ~ ( ~ } )  f o r a l l C C X c l o s e d .  

Denote by YLx the product space [0, 1] x 5~[. For a probability distribution or on 5~ 

let o-ex be defined on ~ex as the product of the Lebesgue measure on [0, 1] and or. 

Let Fex be the set-valued function defined on ~,x by F~x(t, K)  = K. It is clear that 

the distribution of Fe~ with respect to (~/o., orox) is equal to or. 

THEOREM 2.2. Let or be a distribution on Y{. Then any distribution p on X 

which is selectionable with respect to or is the distribution D f  of a selection of the 

random set ,rex on (~,x, or,x). 

3. A result on matchings 

Let G and B (girls and boys) be separable complete metric spaces and let o- 
and p be probability distributions defined on G and B respectively. Let F be a 
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closed subset (friendships) of the product space G x B. We write F(g) for the set 

{b : (g, b) E F}. A proper matching is a measurable function [ : G --* B such that 

f(g) E F(g) for almost all g, and which preserves densities, namely ~(f-l(A)) = 
p(A) for every A C B closed. 

It is clear that a necessary condition for the existence of a proper matching is 

(*) ~r(F '(A )) >= o(A ) for all A CB closed. 

(Here F ~(A)= {g:F(g)fq A ~ Q}; it is clearly a measurable set.) 

When G and B are finite, same number, and with the counting measure then 

the setting fits the well known marriage problem, and Hall's theorem says that 

(*) is both necessary and sufficient for the existence of a proper matching. The 

same is true when o- is atomless and p is purely atomic; see Bollob/ts and 

Varopoulos [2]. In general, condition (*) is not sufficient, even if the matching f 

is allowed to be multivalued. Here is an example. The sets G and B are copies of 

the unit interval with the Lebesgue measure. Each b E B is friendly with exactly 

two elements in G, which are 2b/3 and (2b + 1)/3. Hence F consists of the two 

lines of slope 3 in Fig. 1. It is not hard to check that condition (*) is valid. If f is a 

proper matching then necessarily f(g) = (3g - 1)/2 for g E (], 1]. Hence in order 

to satisfy the matching condition for an interval A = [a,/3 ] which is a subinterval 

of (�89 1] in B the value 3g/2 must equal (or belong to) f(g) for one half of the 

points in (2a/3, 2/3/3)C G. This should hold for every choice (a,/3). Therefore 

f(g) cannot be measurable. 

We shall prove two positive results. The second establishes the existence of a 

proper matching when each type of the elements in G is large. The proof relies 

on the first result which is concerned with general G and B but applies only to 

B / 7  

I l l  
1/3 2/3 1 
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matchmakers  with a sense to probability, as follows. A mixed matching is a 

measurable function p,(g) which associates with each g @G a probability 

measure on B with support  included in F(g), and which preserves densities in 

the sense that p ( A ) =  f~tz(g)(A)do- for all A C B closed. 

Notice that if the support of ~ ( g )  is singleton, say f(g), then the mixed 

matching is a proper  matching. Notice also that in the example described in Fig. 

1 it is quite easy to find a mixed matching, namely with p,(g) equally distributed 

among F(g). Our general result is as follows. 

THEOREM 3.1. Suppose that for every g the set F(g ) is compact. Then condition 

(*) is necessary and sufficient ]:or the existence of a mixed matching. 

The second positive result is: 

THEOREM 3.2. Suppose G is of the form [0, 1] x Go and o" is the product of the 

Lebesgue measure on [0, 1] and a distribution ~o on Go. Suppose also that for every 

g = (t, g~) in G the set F(g) is compact and depends only on the Go-coordinate go. 

Then condition (*) is necessary and sufficient for the existence of a proper 

matching. 

The proofs involve several steps which we list as lemmas. 

LEMMA 3.3. There is a set B~ in B which is a countable union of compact sets 

and such that F(g)CB~ for almost every g in G. 

PROOF. Let b~, b2," �9 �9 be a dense sequence in B and let A,,~ denote the closed 

ball with radius 1/i around b~. For a given e > 0, and for each n there is an index 

i(n) such that o'({g : F(g)C C, })=> 1 - e 2 -", when C, = A,,~ U . . .  U A,,,tn~. The 

set C = O C, is then totally bounded, hence compact,  and o-({g : F(g)C C})-> 

1 - e. The union of such sets C determined by a sequence of e which converge to 

0 is the desired set B1. 

Let Y' denote the collection of probability distributions on B, considered with 

the weak convergence of measures. The latter convergence is metrizable; see 

Billingsley [1], chapter 1 and appendix III.  Let J2 denote the family of 

measurable mappings p, : G ~ ~. With each/z  E ~ we associate the probability 

measure on G x B obtained as the integration of /z(g) with respect to the 

marginal o- (i.e. the measure of C x A  is fclx(g)(A)dtr) .  We use the same 

notation ~ to denote the associate probability measure on G x B, and the weak 

convergence of these measures is served as a convergence notion on ~ .  With 

each ~ ~ ~ we also associate a distribution p(/z) on B which is the marginal 

distribution on B of the probability measure p, on G x B. 
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LEMMA 3.4. p(/.t):eg ~ ~ is continuous. 

PROOF. Well known; see Billingsley [1], theorem 3.1. 

In eg we identify a subfamily ego which consists of all the elements/x in eg 

such that the support o f / z (g )  is contained, for almost every g, in F(g). Notice 

that in Theorem 3.1 we promised an element ~ in ego with p(/z) = p. Recall that 

a collection of probability measures on a metric space S is tight if for every e > 0 

there is a compact set K C S such that r(K) => 1 - e for every r in the collection. 

LEMMA 3.5. The collection of distributions on G x B which are associated with 
elements in ego is tight. 

PROOF. Let BI be given by Lemma 3.3 and let AoCB~ be compact and such 

that o-({g:F(g)C A0})> 1 -  e/2. The measure o~ itself is tight (Billingsley [1], 

theorem 1.4) and let C C G  be compact with t r ( C ) > l - e / 2 .  Let Co be the 

closure of C fq {g:F(g)CAo}.  Then o-(Co)> 1 -  e. The condition that /z(g) is 

supported in Ao for g ~ Co implies that /z(Co• Ao)> 1 - e  for /z E ego. This 

completes the proof. 

LEMMA 3.6. Every sequence in ego has a converging sequence with limit in ego. 

PROOF. Prohorov's theorem (Billingsley [1], theorem 6.1) implies that every 

sequence/zk has a converging subsequence. Let v be the weak limit. We have to 

check that u is in ego, namely that it can be disintegrated with respect to o-, and 

that in the disintegration, v(g) is a probability measure supported in F(g). The 

measure o" serves as the marginal measure for every /xk, hence v(g) is well 

defined by the disintegration. It is supported in F(g) since every/xk is supported 

in F and the support can only shrink with passage to a weak limit. Since 

/.~k (C x B) = o-(C) for every C C G, and since/xk (g) is almost surely a probabil- 

ity measure, it follows that u(g) is a probability measure. This completes the 

proof of the lemma. 

PROOF OFTHEOREM 3.1. Necessity of the condition is clear. We first check the 

sufficiency of the condition in the case that tr has no atoms. Let A~, A2 , . . .  be 

disjoint subsets of B~, with union equal to B~ and each with diameter less than a 

prescribed e > 0. Suppose also that each Ai is a difference of two closed sets in 

B~. Such a sequence can be constructed since B is separable. Then, it is an easy 

exercise, the sets {g : F(g) f3 Ai ~ Q} are measurable. Let U = {1,2,. �9 �9 } with the 

probability measure po({j})= p(Aj). Consider the matching problem with re- 

spect to the spaces (U, po) and (G, tr), and when the friendship relation contains 
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(j, g) if F ( g ) N  A j ~  0 .  It is clear that. for this matching problem condition (*) 

holds. By the extension of Hall's theorem to the case with purely atomic versus 

atomless measures we have a mapping f0 : G--* U which is a proper matching. 

(For this extension of Hall's theorem see Bollob~is and Varopoulos [2].) We 

create now a mapping f : G --~ B by choosing f ( g )  ~ A~ if fo(g) = i. The function 

f can be chosen measurable by standard selection arguments (see e.g. Wagner 

[11]). The mapping f, viewed as an element in M0, has the property that p( f )  (the 

marginal on B) is close to p if e is small. This follows easily from the definition 

of weak convergence, and the properties that fo is a proper matching between o- 

and p9 and that the diameters of At are small. The continuity of p : Mo--~ ~ with 

the compactness of M0 (Lemmas 3.4 and 3.6) supply a limit /~o in M0 of the 

choices f when e---~0 such that p(/~0)= p. This completes the case when o- is 

atomless. 

When o- has atoms, say g~, g2," �9 ", we change G by attaching to each atom g~ 

an interval Z = [0, a~]. Denote by G1 the extended space. Then G~ is metrizable. 

We extend the relation F to G~ by letting F( t )  = F(g~) for t E J~. With a proper 

choice of at the graph of the extended relation is still closed. Finally, o- is 

extended to GL by distributing the value tT({g,}) uniformly on [0, a~]. It is clear 

that condition (*) holds for the extended (7 as well. By our proof for the atomless 

case we have a p.(g) defined on G1 with p(p.) = p. We modify this/.~ and define it 

on the atoms of t~ by I~(g~)(A)=f~i l~( t ) (A)dt .  It is easy to verify that this 

generates a mixed matching on G. This completes the proof. 

PROOF OF THEOREM 3.2. Let/.~ : Go-~ ~ be the mixed matching guaranteed 

by Theorem 3.1. The idea is to define f(t ,  go) such that for go fixed the 

distribution of f(  ", go) is equal to p.(g). Once this is done, it is clear that f is the 

desired proper matching. But recall that f should be measurable in the two 

variables. Here is a possible construction. Let A,.t be measurable subsets of B1 

such that: For a fixed n the sets A.,~ are disjoint, with union equal to B1 and the 

diameter less than 1/n. The sequence A.+Lj is required to be a refinement of A.,~ 

in the sense that an increasing sequence of integers j, < j2 < �9 �9 �9 exists such that 

A.,~ is the union of A.+Ij for j~ <j_-<j~+,. This can be arranged since B~ is 

countably compact, hence A~,~ can be chosen with compact closure. Let b~i be a 

point in A.,i, this for each (n, i). Define 0.(g0, i) to be Iz(go)(A.a U . . .  U A.,~). 

Then, since i t (g)  is measurable, the functions 0. are measurable. We define 

[.(t, go) = b.,~ if 0.(g0, i - 1 ) <  t <-_ O.(go, i), and here 0.(g0,0)= 0. The functions 

f. are, clearly, measurable, and for fixed go the distribution of [. (., go) is close in 

the weak convergence to p.(go). The choice of A.+I.j as a refinement of A..~ 
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implies that for fixed (t, go) the values f ,(t ,  go) form a Cauchy sequence. The 

completeness of B implies that the limit, as n ~ ~, exists. This limit, f(t,  go), is 

the desired proper matching. 

4. Proof of Theorems 2.1 and 2.2 

The necessity of condition ( # )  is clear. 

Suppose now that ~ on 3'{ and p on X satisfy condition ( # ) .  Consider a 

matching situation with B = X and G = ~ex and with the probability distribu- 

tions p and ~ex on X and Kex respectively. Let the friendship relation be 

determined by Fox, namely (K, x) in F if x ~ K. The graph of Fox is indeed closed 

and the values of Fex are, by definition, compact. Condition (*) for the matching 

problem is then identical with condition ( # ). By Theorem 3.2 there is a selection 

f on Fox with distribution equal to p. This proves that p is selectionable and that 

it can be realized as a distribution of a selection of Fex. This completes the proof 

of the two theorems. 

5. The ensemble of selections 

For a distribution ~ on ~/" we denote by S(o-) the family of distributions on X 

which are selectionable with respect to o-. We use the construction of the 

previous sections to prove that S(~r) is convex, compact and depends continu- 

ously on o-. 

We use the Prohorov metric P(rl, r2) to describe the weak convergence of 

probability measures, namely P(r~, r2) is the minimal e > 0 such that rl(A)=< 

rz(N,(A )) + e and r2(A ) <= rI(N~(A )) + e where N~(A ) is the e-neighborhood of 

the measurable, set A in the metric space on which r~ and r2 are defined. We 

consider probability distributions on X and on ~ ;  both are separable, hence 

convergence in the Prohorov metric is equivalent to weak convergence of 

measures; see BiUingsley [1], page 239. 

PROPOSITION 5.1. Let ~r be a distribution on ~(, then S (~r ) is a convex, compact 
set. 

PROOF. Condition ( # ) can be written with C open instead of closed. Hence, 

by condition (iv) in Billingsley [1], page 24, condition ( # ) determines a closed 

set under weak convergence of measures. The distribution ~ is tight, therefore a 

compact subset Y(0 of Y{ exists with ~r(~(o) => 1 - e. The union of the sets K in ~0 

is a compact subset of X;  denote it by X0. If p is a selectionable distribution of cr 

then p(Xo)_>--1- e, say by condition ( # ) .  Hence the family S(o-) is tight, and 
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therefore precompact (Billingsley [1], page 37). Convexity of S(o.) is implied by 

( # ) .  This completes the proof. 

The continuity that we wish to establish for S(o.) is that o.~ close to o-2 in the 

Prohorov metric implies that the compact sets S(o-~) and S(o-2) are close in the 

Hausdorff distance; the latter is defined with respect to the Prohorov distance 

between elements p E S(o-). Compare with the definition in Section 2. The 

statement and the proof will follow two lemmas. 

In what follows we consider ~,x = [0, 1] • Y/" as a metric space, where the 

metric is the sum of the line distance on [0, 1] and the Hausdorff distance on ~. 

Recall that F~dt, K ) =  K is defined on Y{o~ with values in ?7{. 

LEMMA 5.2. Let A I , . . . , A q  be disjoint measurable subsets of Y(ex, and 
Ba, . . ., Bq be also disjoint measurable subsets of Ylex. Suppose each A, and each B~ 
has diameter less than O, and that h(A,,B~).< 0 for each i. Let ~'~ and r2 be 
atomless distributions on Y{ox such that 1"~( U A~)_ -> 1 - 0 ,  ~-2( U B~)_- > 1 -  0 and 

Z J ~-ffAi)- r2(B~)l _ -< 0. Then, for every selection f~ of Fex there is a selection f2 of 
Fo, such that P(p~, p2) < 40 when p, is the distribution of [~ with respect to z~, i = 1,2. 

PROOF. We first augment A~ and B~ so that rl(A,) = ' r z ( B , ) .  This can be done, 

since ~-~ are atomless, with only, possibly, changing the estimates to ~1( U A~)-> 

1 - 20, z2( U B,) _-> 1 - 20 and h(A,, B,) < 20. Let H1, H2, �9 �9 �9 be disjoint measur- 

able subsets of X, with union equal to X and such that each Hi has diameter less 

than 0. These can be found since X is separable. For i = 1,-- . ,  q and for all 

j = l , 2 , - "  let a~.j=rl(f71(t-Ij)fqA~). Since ~'2 is atomless, each B, can be 

partitioned into measurable subsets B~.j such that z2(B~j)= a,,. If a,.j > 0  we 

define lift, K) for (t, K ) E  B~a to be a point x in K with distance from Hi less 

than 30. Such an x can be found since the distance between ( t ,K) and the 

elements in A~ is less than 30, and there is an element (s,L) in A~ with 

f ff s, L)  E t-Ij. Furthermore, since ( t, K)---~ K t3 N30( I-Ij ) determines a measurable 

set valued mapping on B~.j, the function f2 can be chosen measurable by standard 

selection procedures; see Wagner [11]. This defines f2 on U B~. On the 

complement we define fz arbitrarily. 

We claim that with this definition P(p,,p2)<40. Indeed, let H C X .  Let 

J = {j : ~ f) H ~  0} and let Ho be the union of/-/j, j E J. Then p,(H) <= p,(Ho) 
and the latter is equal to ~'fff~-~(Ho)). The latter number does not exceed 20 plus 
the sum of a~.j for i = 1 , . . - , q  and j ~ J .  The latter sum is dominated by 

~-z(f~-~(N30(Ho))). Since N3e(Ho) is contained in N4o(H) we get that p,(H) < 
p2(N40(H)) + 20. This is one of the desired inequalities. To check the second one 
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let J = {j : H fq N3o(/-/~) ~ ~}, and /40 be the union of N3o(/-/~) for j ~ J. Then 

odH)  N offHo). If B~.~ belongs to f~'(Ho) then A,.~ belongs to ff'(N3o(Ho)). Since 

r2(X\ [..J A~.~) is less than 20 and since zffA~,~) = ~-2(B~,~) it follows that o2(Ho)N 
p,(N3o(Ho))+20. This yields the second inequality needed for the claim. This 

completes the proof. 

LEMMA 5.3. Let Mo be a compact subset of a complete metric space M. Let 

0 > 0  and let A h ' " , A q  be a partition of Mo. Then a 3 > 0  exists such that 
whenever r and "r2 are atomless distributions on M with ~'ffMo)>_ 1 -  0 and 

P0"~, zz)< 6 then disjoint sets E~, . . . ,Eq of M can be found such that ~'2(E~)= 

r,(A,) and Z7=, I'r~(A,)- "rifE, fq N~(A,))I <-- 0. 

PROOF. Let 6 = 02 -tq+~). Denote A0 = M\Mo.  We check now the 22 q -  1 

nonempty subsets of {0, 1,. �9 q }. For each subset J let A~ be the union of A~ for 

i E J. Let aj = max (0, ~'~(A~) - ~'ffNs(Aj))). For each such J we choose, arbitrar- 

ily, a set G in the complement of N~(A,) with r f fG)  = a,. Let Co denote the 

union of the sets G. The choice of 3 and the inequality P(~-~, rz) < 6 imply that 

~'ffCo)<-O. To each A~ we associate now the set F(A~)=CoUNs(A~). The 

choice of Co implies that r~(A,) _-< r2(F(Aj)) for all J, where F(Aj)  is the union of 

F(A~) for i ~ J. By the extension of the marriage lemma given in Bollob~is and 

Varopoulos [2], it follows that disjoint subsets Eo, G , ' "  ", Eq exist with E~ C 

F(A~) and zffG) = zffA~). For i _>- 1 the differences G \ N~(A~) are disjoint, and 

are contained in Co. Hence E , , . . . ,  Eq are the desired sets. This completes the 

proof. 

THEOREM 5.4. S(~) is continuous in or. 

PROOF. Given o.~ and e > 0 we ought to produce a 6 > 0 such that P(o.~, o-2) < 

3 implies h(S(o.l), S(o.2)) < e. Let 0 = e/8. Since tr, is tight, a compact subset ~/o 

of Yf exists such that trffYfo) _-> 1 - 0. Let Mo = [0, 1] • ~o and let A~,. �9 Aq be a 

partition of Mo into disjoint sets, each with diameter less than 0. Let 6 > 0 be 

determined by Lemma 5.3. If P(tri, o-2) < 3 then it is easy to see that P(r~, r2) < 

where r~ is the extension of o-, to Yf~x (by cross product with the Lebesgue 

measure). In particular rffMo) => 1 - 0 and let E~,. �9 Eq be the sets guaranteed 

for ~'2 by Lemma 5.3. Define B1, . . ' ,Bq by B~=E~NN~(A~). The sets 

A , , . . . ,  Aq, and B , . . . ,  Bq and the atomless distributions r~ and ~'z satisfy the 

conditions of Lemma 5.2 with respect to 20. The conclusion of Lemma 5.2 

implies, therefore, that h(R1, R2)< 80 when R~ is the family of distributions of 

selections of Fox with respect to (Y{ex, ~-~). Theorem 2.2, however, implies that the 
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family R~ is identical with the selectionable distributions of g~, hence the desired 

inequality h(S(tr , ) ,  S(tr2)) < e. 

6. Comments 

The compactness established in Proposition 5.1 can be used for the following 

trivial generalization. 

COROLLARY 6.1. Let  Q be a property of  distributions on X which prevails under 

passage to weak  limits. Let  cr be a distribution on ~{. Then the collection of  

distributions selectionable with respect to ~ and which satisfy property Q is closed 

and compact. 

An example for such results can be found in Hart, Hildenbrand and Kohlberg 

[6], where the distributions which determine the Walras equilibrium form a 

closed set. The authors there also use a standard, or canonical, space, similar to 

our space ~ox, in which all equilibria can be realized. Indeed, in view of Theorem 

2.2, Proposition 5.1 and Corollary 6.1 can be stated with reference to selections 

of Fex on (~ox, o-ex). The passage to a large space is needed since the distribution 

of the random set does not determine the ensemble of distributions of selections. 

A trivial example is a distribution tr concentrated on one point in ~,  say K. Then 

is the distribution of any F(to)---K. But such a mapping F defined on an 

interval to E [0, 1] produces quite different selections than the one defined on a 

singleton {to}. Even if the underlying measure space is required to be atomless 

would not help. Here is the example due to Debreu, and discussed in detail by 

Hart and Kohlberg [5]: 1~ = [0, 1] with the Lebesgue measure and X is the real 

line. Fl( t )  = {t, - t} and F2(t) = {s(t), - s(t)} with s ( t )  = 2t(mod 1). The selection 

f2(t) = s ( t )  on [0,�89 and f2(t) = - s ( t )  on [�89 1], of/:2, has a distribution which is 

not shared by any selection of F1. This example also shows that the distributions 

induced by selections of one random set might not form a convex set. (Notice 

that [0, 1] in this example can be regarded as a parametrization of the family 

{ t , -  t} in ~,  hence to consider selections of distributions tr on ~r with the 

identity map K--~ K does not yield a closed set of selectionable distributions 

even if tr is atomless.) Hart and Kohlberg [5] proved that for two identically 

distributed random sets, each on an atomless measure space, the closure of the 

family of distributions are the same. (Hart and Kohlberg [5] state this result for 

subsets of a euclidean space, but the proof works, with only minor modifications, 

for any separable metric space.) Since trex on ~cex is atomless, and in view of 

Theorems 2.1 and 2.2, this result can be phrased as follows. 
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PROPOSITION 6.2. Let F : f l - - -~{ be measurable, defined on the atomless 

measure space (1), tz ). Then the closure (in the weak convergence) of {D[ : f a 

selection o fF}  coincides with the selectionable distributions of DF. 

The previous result combined with Theorem 5.3 produce the following result. 

(Naturally, Fk converges in distribution to Fo if DFk converges weakly to DFo.) 

A partial result along this line was obtained by Salinetti and Wets [10]. 

THEOREM 6.3. Let F~: ~ - - ~  5~ be measurable, delined respectively on the 

measure spaces (~,, p,~) and assume that each tz~ is atomless, this for i = 0, 1,. �9 �9 

If Fk converges in distribution to Fo then the closures of {Df : f a selection of Fk} 

converge in the Hausdorff metric to the closure of {Dr : f a selection of Fo}. 

Our final comment  is that if X is locally compact  then Theorems 2.1 and 2.2 

hold with random sets having values in the family of closed (rather than 

compact)  sets. The metric on the family of closed sets is then determined by the 

closed convergence; see Hildenbrand [7]. The same applies to Theorems 3.1 and 

3.2 where the condition that F(g)  is compact  can be dropped.  The reason for this 

is that we can apply our results for the one-point compactification of X. Closed 

convergence of closed sets in X is equivalent to the convergence in the 

Hausdorff distance in the compactification. The distributions D f  guaranteed by 

Theorems 2.1 and 2.2 for the compactification are then actually supported at X, 

since p is supported at X. Proposition 5.1, Theorem 5.4 and the results of the 

present section can also be extended to the closed sets setting if X is locally 

compact,  provided we allow the distributions to assign positive weight to the 

point at infinity. 
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